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Abstract. We report an experimental study of the heat transport along a chain of macroscopic beads: at one
end, one bead is periodically heated and we record the resulting temperature variations of another bead as
a function of position and time. The experimental results show that the chain behaves like a high-order low-
pass filter. The measurement of the associated cut-off frequency makes it possible to determine accurately
the resistance of the bead-bead contact: we make use of the experimental setup for studying the effects of
liquid bridges decorating the bead-bead contacts, which provides important clues for understanding the
thermal properties of partially wet granular matter.

PACS. 66.70.+f Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves –
81.05.Rm Porous materials; granular materials – 91.60.Ki Thermal properties

1 Introduction

The transport of electricity, sound or heat in a dense as-
sembly of solid particles poses interesting and puzzling
questions. Even if granular materials are widely used in in-
dustry, one is still far from understanding entirely how the
transport coefficients relate to the physics of the contacts
between the particles and the geometry of the contact net-
work (texture). For instance, for over a century [1,2], elec-
trical transport in metallic powders has generated inter-
est. These systems exhibit fascinating properties, such as
highly non-linear and hysteretic electrical conductivities
as well as extreme sensitivity to electromagnetic waves [3].
The propagation of soundwaves in granular materials also
exhibits very interesting features; non-linearities such as
a slight dependence of the transmission amplitude on the
frequency of the source at low vibration amplitude and an
extreme sensitivity to the position of each grain [4]. The
propagation of soundwaves is so sensitive to the texture
that it is likely to be altered by the vibration itself or by
small changes in the temperature. However, the propa-
gation of non-linear waves in a one-dimensional chain of
beads under static stress has been experimentally proven
to follow the prediction of Hertz theory as long as plas-
tic deformations of the grains at the contacts are not in-
volved [5].
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In the same way, the transport of heat in granular ma-
terials poses puzzling questions which need to be answered
as thermal properties of granular matter are of great prac-
tical importance. Indeed, the most common materials used
to insure thermal as well as acoustic insulation in build-
ings consist of assemblies of solid particles or fibers. For in-
stance, glasswools are efficient thermal insulators that also
present the advantage of being low-cost, imputrescible and
fire resistant as they are produced mainly from recycled
glass and sand [6]. Moreover, because of their ductility,
they can absorb any unevenness of the substrate. Another
important application worthy of mention here is the use of
granular materials as buffers in nuclear-waste deposits [7].
Experimental and theoretical studies of the heat transport
in granular materials have already been reported [2,8–10].
They pointed out the crucial role played by the physics of
the contacts between the grains. Accordingly, humidity
has been experimentally proven to increase significantly
the thermal conductivity as water tends to decorate the
contact points [11].

Whereas this latter study considered the thermal prop-
erties of the bulk granular material, involving thus the tex-
ture of the material, there does not exist, to our knowl-
edge, any experimental study dedicated to the thermal
properties of the decorated contacts alone. In the present
article, we report an experimental study of the thermal
conductivity of a one-dimensional chain of beads. This is
in the same spirit as preceding studies of electric conduc-
tivity [3] and sound propagation [5] that made it possible



510 The European Physical Journal B

to analyze the physics of the contacts in the absence of
texture effects. The response of the system to tempera-
ture cycles shows that a periodic medium can be an effi-
cient thermal-insulator in the sense that, for instance, the
chain is very efficient in filtering temperature changes as
it acts as a high-order low-pass filter. We determine the
corresponding cut-off frequency in order to obtain reliable
measurements of the thermal resistance associated with
the bead-bead contact. We make use of the experimental
setup for studying the effects of liquid bridges decorating
the bead-bead contacts.

The content of the manuscript is organized as follows:
in Section 2, we introduce the principle of the experiment
and describe the experimental setup and procedure. In
Section 3, we report our experimental results obtained in
the cases of dry or wet contacts and compare with theo-
retical predictions. Finally, we conclude in Section 4.

2 Experimental setup and procedure

The experiment consists of heating periodically one end of
a linear chain of beads and recording the resulting temper-
ature of the nth bead as a function of time t. In the next
Section 2.1, we describe the experimental setup whereas
the Section 2.2 is dedicated to the procedure used to ana-
lyze the thermal response of the system to the heat injec-
tion (Fig. 1).

2.1 Experimental setup

The chain consists of 10 centimetre-sized ball-bearing
steel-beads (AISI 304, diameter d = 1 cm, from Marteau
& Lemarié) aligned with the help of three PTFE plates
[see the chain cross-section in the inset (Fig. 1)] that in-
sure a relatively small thermal contact with the remaining
part of the experimental setup which consists of a stain-
less steel frame. The contact between the beads is insured
by pushing (static axial force F ) the chain at one end
against a fixed steel cylinder located at the other end. A
force sensor (Entran, ELA-B2E-10KN) is used to measure
F to within 10 N (F < 10 kN).

In order to inject heat at one end of the chain, the
first bead is equipped with a small heating wire (Constan-
tan, diameter 100 µm, typical resistance r � 1 Ω) placed
at its center. We impose the periodic voltage U(t) =
U0

(
1+sin 2πνt

)
from a home-made linear power-amplifier

driven by a function generator (Stanford Research Sys-
tems, DS345). A first multimeter (Keithley 2001) is used
to measure the voltage difference U(t) across the heat
source (Fig. 2). In our experimental conditions, the fre-
quency ν ranges from 1/3600 to 1/30 Hz whereas the max-
imum voltage 2U0 is about 3 V. The power P (t) injected
in the first bead is thus written:

P (t) = P0

[
3
4

+ sin 2πνt +
1
4

sin
(

4πνt +
3π

2

)]
(1)

where P0 = 2U2
0/r (we neglect here the variation of r with

the temperature). We point out that the bead is contin-
uously heated with a mean power 3

4P0 and that the vari-
ation with time of the heating power P (t) contains two

Fig. 1. Sketch of the experimental principle. The chain consists
of 10 centimetre-sized steel-beads aligned with the help of three
PTFE plates (inset). In order to insure the contact between the
beads, a static force F is applied at one end (bead 10). The
first bead (bead 1) is heated by means of a small resistive wire
located at its center: the heating voltage is measured by means
of a first multimeter. In order to obtain the local temperature
of the chain, the bead n (n = 6 in the sketched situation) is
equipped with a Pt-sensor whose resistance is measured with
the help of a second multimeter. In addition, the temperature
of the surrounding air, between beads 7 and 8, is measured by
means of a second Pt-sensor (not sketched in this figure).
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Fig. 2. Experimental T (2) and U vs. time t. We report, for ν =
1/3600 Hz, the temperature T (2) of bead 2 and the voltage U
as a function of time t during 2 hours in the permanent regime
(the total duration of the experiment is 10 hours, correspond-
ing to 10 periods of the excitation). The mean temperature is
about 2.5 K above the temperature Ta of the surrounding air

(δT
(2)
0 � 2.5 K). The amplitude of the temperature variations

at ν is about 2.21 K whereas it is about 0.46 K at 2ν (dry
contacts, F = 100 N).

harmonics. We shall make use of this latter property for
studying simultaneously the response of the system at the
three frequencies 0, ν and 2ν.

The bead n (the index n refers to the position of the
bead in the chain) is equipped with a temperature sensor
(Pt100, from Heraeus) located at its center. A second mul-
timeter (Keithley 196), used in the 4-wire configuration,
measures the resistance Rs of the sensor so that the local
temperature of bead n, T (n)(t), is known to within about
10−3 K. As we do not regulate the overall temperature
of the experimental setup, we measure, in addition, the
outside air temperature, Ta, by means of a second tem-
perature sensor (Pt100) located in air and connected to a
third multimeter (Keithley 196).
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0 . As an example,

we report the amplitude, δT
(3)
1 , and phase, φ

(3)
1 , measured for

bead 3 as a function of the square heating-voltage U2
0 . The

amplitude of the harmonics δT
(n)

1(,2) is proportional to U2
0 and

the phase Φ
(n)
1(,2) does not depend on U0, which proves that the

response of the system is linear.

The function generator and the three multimeters are
connected to a computer through a IEEE interface. For
a given set of experimental conditions (position n of the
sensing bead, applied force F , dry or wet contacts), a sim-
ple C-routine automates the experiment: for a chosen set
of heating powers P0 and frequencies ν, the voltage U(t)
and the temperature T (n)(t) are measured (sampling fre-
quency 1 Hz) and saved to the hard-drive (Fig. 2). Analy-
sis of the data is performed afterwards (Igor Pro 4, Wave-
Metrics, Inc.).

2.2 Transfer function

From equation (1), if the system has a linear response,
we expect the temperature T (n)(t) to exhibit the same
spectral components as P (t), that is to say, harmonics at
frequencies 0, ν and 2ν. From the raw data (Fig. 2), we
extract five relevant quantities; the amplitudes, δT

(n)
1 and

δT
(n)
2 , the phases, φ

(n)
1 and φ

(n)
2 , of the two harmonics at

the frequencies ν and 2ν and the mean temperature differ-
ence δT

(n)
0 between the bead n and the outside atmosphere

(0 frequency). To do so, we interpolate the experimental
temperature-difference ∆T (n)(t) ≡ T (n)(t) − Ta with

∆T (n)(t) = δT
(n)
0 + δT

(n)
1 sin

(
2πνt + φ

(n)
1

)

+ δT
(n)
2 sin

(
4πνt + φ

(n)
2

)
. (2)

The origin of time t in equation (2) is accurately obtained
by interpolating U(t) with a sine-function and by choosing
the origin such that U(0) = U0 and dU

dt (0) > 0.
We first check that the response of the system is linear:

the amplitude of each of the harmonics, δT
(n)
1(,2), scales as

U2
0 (thus, is proportional to the heating power) whereas

the corresponding phase, φ
(n)
1(,2), does not depend on U0

(Fig. 3).
Thus, from the quantities δT

(n)
0 , δT

(n)
1 , δT

(n)
2 ,

φ
(n)
1 and φ

(n)
2 , we can determine experimentally the
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Fig. 4. Experimental H(2) and θ(2) vs. frequency ν. As an
example, we report the amplitude, H(2), and the phase, θ(2), as
a function of the frequency ν. The data evaluated from the first
or the second harmonics are marked with different symbols.
We observe that the responses estimated from the first and
second harmonics respectively superpose down to temperature
variations with an amplitude of about 10−3 K (the lines are
only a guide for the eye).

power-to-(temperature of the bead n) transfer-function,
H(n)(ν) ≡ H(n)ejθ(n)

, as follows: a first set of data points
is obtained from the first harmonics at the frequency ν.
From the first harmonics, we get H(n) = δT

(n)
1 and

θ(n) = φ
(n)
1 . In equation (1), we notice that the power

injected in the first harmonic at ν is 4 times larger than
that injected in the second harmonic at 2ν, and that there
is a phase-shift of 3π

2 between them. Thus, from the same
experiment, the second harmonic provides another set of
data points with H(n) = 4δT

(n)
2 and θ(n) = φ

(n)
2 − 3π

2 at
the frequency 2ν. Note that, by construction, H(n) has
the dimension of temperature and is proportional to P0.
Strictly speaking, we should divide H(n) by P0 to get the
power-to-(temperature of the bead n) transfer-function,
but, as we will not change P0 in what follows, we will re-
port H(n) as the temperature defined above. In Figure 4,
we report a typical experimental result for H(2)(ν). We
observe that the data evaluated from the first and second
harmonics superpose down to temperature variations with
an amplitude of about 10−3 K.

We shall explain in the section devoted to the exper-
imental results (Sect. 3) how the response of the chain
can be extracted from these data, provided we are able to
model the response of the experimental setup.

2.3 Experimental procedure

The experimental procedure is as follows: for the cho-
sen experimental conditions (applied force F , dry or wet
contacts), in order to obtain the response of the system,
we first place the bead containing the temperature sen-
sor at a chosen position n. For a series of excitation fre-
quencies ν, we record the temperature variation T (n) as
a function of time t in the permanent regime. The re-
sponse at a different position n is obtained after opening
the experimental setup and changing the position of the
sensing bead. The experimental procedure makes it possi-
ble to determine H(n)(ν) for n ∈ [2, 7] in the frequency
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range 1/ν ∈ [30, 3600] s. Measurements at frequencies
smaller than 1/3600 Hz are, in principle, possible but note
that we record the temperature variations for 10 periods,
which then would lead to an experimental time larger than
10 hours. For frequencies larger than 1/30 Hz, the temper-
ature variations become small (the amplitude is typically
less than 10−3 K) and the response of the system is de-
termined with poor accuracy. We always make sure that
the measurements are reliable by checking that the phase
of the measured harmonics is locked (i.e. that the phase
is not arbitrary with respect to that of the heating volt-
age) and exclude the data points that do not satisfy this
condition.

3 Experimental results

In the following section, we make use of the experimen-
tal setup for studying the thermal properties of the chain
under different experimental conditions. In the next Sec-
tion 3.1, we consider the case of dry contacts in air: the
analysis of the whole set of experimental data permits the
modeling of the thermal response of the whole experimen-
tal setup. Then, Section 3.2 is dedicated to the study of
wet contacts obtained by the addition of liquid droplets
in the bead-bead contact-regions.

3.1 Dry contacts

3.1.1 First experimental observations

In Figures 5 and 6, we present the whole set of exper-
imental data obtained for the chain of steel beads with
dry contacts and F = 100 N (the static applied force is
small and only insures that the beads are in contact). At
first sight, the chain behaves like a low-pass filter whose
order depends on the position n of the bead within the
chain (the larger n is, the larger is the order of the filter).
Nevertheless, we cannot immediately extract the charac-
teristic frequency of the filter without exploring in detail
the response of the experimental setup.

For instance, consider only the response of the system
at zero frequency. Due to thermal losses, one would ex-
pect the mean temperature δT

(n)
0 (accordingly H(n)(0))

to vanish (i.e. T (n)(t) → Ta) for n → ∞. However, even
if we observe that H(n)(0) decreases almost exponentially
as n is increased, the mean temperature-difference H(n)(0)
seems surprisingly to tend to a constant value for large n
(typically larger than 7, Fig. 7). The decay of H(n)(0) to
a finite temperature-difference is the most obvious experi-
mental manifestation of the non-trivial response of the ex-
perimental setup. It turns out that, the response at zero
frequency is not enough for us to measure the thermal
losses to the outside atmosphere: the whole set of experi-
mental data is necessary for obtaining a correct model of
the experimental situation, which we discuss in the next
section.
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Fig. 5. Amplitude H(n) vs. frequency ν. The amplitude H(n)

decreases faster with increasing frequency ν for larger n (F =
100 N, dry contacts, the lines are only guide for the eye).
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Fig. 6. Phase θ(n) vs. frequency ν. The absolute phase-shift
θ(n) increases faster with increasing frequency ν for larger n
(F = 100 N, dry contacts).
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Fig. 7. Experimental H(n)(0) vs. bead position n. We observe
that the temperature difference at zero frequency between the
bead n and the atmosphere decreases almost exponentially as
n increases and seems to tend to a constant value for large n.

3.1.2 Dynamical response

From the experimental data presented in Figure 5, we can
extract the dependence of the amplitude H(n) on the po-
sition n at a given frequency ν (Fig. 8). We observe again
that, even at non-zero frequency, the amplitude H(n) de-
creases almost exponentially as n is increased and seems to
tend to a non-zero value for large n. Experimental data for
n > 7 are not available and we cannot conclude rigorously
that H(n)(ν) vanishes for n → ∞. However, H(n)(ν) seems
to reach a plateau value, H(∞)(ν), for n large compared
to a typical number 1/k′(ν). In order to define unambigu-
ously H(∞)(ν) and k′(ν) from the experimental data, we
interpolate the measurements for n ∈ [2, 7] with:

H(n)(ν) = H(0)(ν) exp [−k′(ν)n] + H(∞)(ν). (3)
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imentally and we find that the limit H(∞) [defined by Eq.(3)]
decreases when the frequency ν is increased (Fig. 9).
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Fig. 9. Asymptotic amplitude H(∞) and k′ vs. ν. We observe
experimentally that the asymptotic amplitude H(∞) decreases,
according to equation (4), when the frequency ν is increased. In
addition, k′ = �(k) obeys equation (5), which makes it possible
to characterize the thermal conduction along the chain.

Fig. 10. Sketch of the experimental situation.

In Figure 9, we report the experimental values of H(∞)(ν)
[Eq. (4)] and k′(ν) = �(k) [Eq. (5)] which can be ac-
counted for by modeling the experimental situation as fol-
lows (Fig. 10): we consider the beads as heat capacitors
(heat capacity C), each one connected to its two neighbors
through thermal resistors (resistance R), and we assume
that the thermal losses to the frame can be associated to
the thermal resistance, β along the chain (n ≥ 2) and γ
at bead 1. A detailed description of the model is proposed
in the appendix.

We observe a good agreement of the experimental data
(Fig. 9) with

H(∞)(ν) ∼ 1
√

1 +
(

2πν
ωc

)4
(4)

for ωc = (0.8 ± 0.01) × 10−3 rad s−1 where ω−1
c ≡ C

√
βγ

from the model [see appendix, Eq. (18)]. In addition, we

expect k′ to be the real part of k, defined by

cosh (k) =
[
1 +

1
ω0τc

]
+ j

2πν

ω0
. (5)

where ω−1
0 ≡ RC/2 and τc ≡ βC. From equation (5)

and the experimental data, we get ω0τc = 1.87± 0.03 and
ω0 = (7.6±0.1)×10−3 rad s−1. Note that the first quantity,
ω0τc ≡ 2β/R, is the ratio of the resistance β associated
with the energy losses to the resistance R of the bead-bead
contacts whereas ω0 ≡ 2/(RC) characterizes the transport
of heat along the chain alone.

3.1.3 Quantitative analysis

In this section, we shall compare the experimental value
of the contact resistance, which we can extract from the
experimental ω0, with a theoretical model by Batchelor
and O’Brien [2].

First, one can find in the literature the heat capacity
cs = 0.5 J g−1 K−1 and the density ρs = 8 g cm−3 of steel
(AISI 304), which gives C = 2.1 J K−1 for d = 1 cm. Thus,
from the experimental value of ω0, one obtains the exper-
imental value, Rexp = (126 ± 1) K W−1, of the resistance
of the bead-bead contact.

Second, we can consider theoretically the heat flux
Ψ ≡ (T (n) − T (n+1))/R from bead n to bead (n + 1). Ac-
cording to Hertz theory, due to the axial applied force F ,
the radius ρ of the contact region is given by [12]:

ρ = F 1/3

[
3(1 − σ2)d

8E

]1/3

(6)

where E = 2×1011 Pa is the Young modulus and σ = 0.29
the Poisson ratio of the material that the beads are made
of. In our experimental conditions (F = 100 N), we find
ρ = 0.12 mm. In addition, the heat conductivity of steel,
ks = 16.2 W m−1 K−1, is large compared to the thermal
conductivity of air, ka = 0.025 W m−1 K−1. Denoting
ζ = ks/ka and ξ = 2ζρ/d (in our experimental conditions,
ζ � 650 and, from the radius ρ of the contact region,
ξ � 15.6), we can write

2Ψ

πkad(T (n) − T (n+1))
= H0(ζ) + Hc(ξ) + ∆Hm(ξ). (7)

In equation (7), H0(ζ) stands for the dimensionless heat-
flux across the air layer in the case of a point-like contact.
Provided that ζ 
 1,

H0(ζ) = 2 loge

(ks

ka

)
+ A − 3.9 (8)

where A is a constant of the order of unity which depends
on the outer field conditions and is independent of ζ. The
second contribution Hc(ξ) in equation (7) accounts for the
dimensionless heat-flux across the contact circle of finite
radius ρ. In the limit ξ 
 1, Hc(ξ) ∼ 2ξ/π. We point
out that, from [2], Hc(ξ) obeys this asymptotic behavior
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typically for ξ > 10. Finally, the last contribution to the
heat flux in equation (7), ∆Hm(ξ) accounts for the differ-
ence between the real flux across the air layer and the flux
expected in the case of a point-like contact. In the limit
ξ 
 1, ∆Hm(ξ) ∼ −2 loge ξ but we note that this asymp-
totic behavior is expected for very large values of ξ. From
the experimental value of ξ, we expect ∆Hm(ξ) � −0.5 [2].
Finally, from equation (7), we obtain the theoretical value
Rtheo = 2546/(18.5 + A) K W−1 which agrees quantita-
tively with the experimental value Rexp � 126 K W−1 for
A � 1.7, which is of the order of unity. Thus, we conclude
from the excellent agreement (in spite of the uncertainty
in the value of A) between Rexp and Rtheo that measure-
ments of the frequency ω0 provides reliable values of the
contact resistance R.

In the next Section 3.2, we make use of the experimen-
tal setup for analyzing the effect of liquid bridges decorat-
ing the regions of contact between the beads.

3.2 Wet contacts

As already mentioned in the introduction, humidity has
been experimentally proven to increase significantly the
thermal conductivity of an assembly of glass beads as wa-
ter decorates the contact points [11]. Our experimental
setup is particularly suitable for studying the effects of liq-
uid decorating the contact points. Indeed, a change of the
physical conditions in the contact region is not expected
to affect any of the model parameters (τc, τb, α as defined
in the appendix) except the cut-off angular frequency ω0,
which relates to the resistance of the contact. Thus, one
can save experimental time and study the evolution of ω0

alone by analyzing the response of the system at a given
position n only.

3.2.1 Experimental procedure

We shall report the evolution of the thermal resistance
R of the bead-bead contact as a function of the size of
the liquid bridges that decorate the contact regions. As
an example, we choose to study the response of the sys-
tem at bead 4. We know from the study of the dry system
that the amplitude of the temperature variations is large
enough for giving significant results and that the order of
the ‘filter’ is also large enough to provide accurate mea-
surements of the cut-off frequency ω0. This choice is to a
large extent arbitrary.

Non-volatile liquid bridges (identical along the chain)
are created by placing a given amount of silicon oil
(Rhodorsil, 47V5000) in each of the bead-bead contact-
regions. We expect, from the large viscosity of the liquid
(ν = 5000 cP), the temperature gradient not to induce
any significant convective flow and the transport of heat
to be only due to diffusion. We image the system from
the side (Fig. 11), which makes it possible to measure the
diameter, Φ, of the liquid bridge (the variability along the
chain remains less than 2%). We measure φ before and af-
ter measurement of the thermal response of the system in

Φ

Frame

Bridge

Bead Bead

Fig. 11. Photograph of a liquid bridge. We measure the di-
ameter Φ of the liquid bridge on photographs of the bead-bead
contact-regions (Φ = 2.17 mm, the lateral size of the photo-
graph is 1 cm).
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Fig. 12. Amplitude H(4) vs. 2πν. The amplitude H(4) is af-
fected by the presence of liquid bridges in the contact regions
between the grains: we observe that, at a given frequency ν,
H(4) increases with the diameter Φ of the bridges. The pres-
ence of the liquid leads to a decrease in the thermal resistance
R of the contact. The experimental data (symbols) are success-
fully accounted for by the theoretical description of the system
[lines, from equation (18) with different values of ω0].

order to make sure that the bridges remain in equilibrium
for the duration of the experiment.

3.2.2 Results

We report in Figure 12, the amplitude H(4) as a function
of the frequency ν for the dry system and three different
diameters Φ. The experimental results exhibit an excellent
agreement with the theoretical expression (18) in which we
use the experimental parameters, τb = 318 s, τc = 246 s,
α = 2289 and Pτb/C = 13.3 K determined previously for
the dry system and adjust only the value ω0 of the cut-off
frequency. From the experimental value of ω0, provided
that the thermal inertia of the bridges remains negligible
compared to that of the beads, we can easily determine
the thermal resistance of the contact R which is found to
decrease when the bridge diameter φ is increased (Fig. 13).

The theoretical description of the thermal resistance
associated with a bead-bead contact of finite size dec-
orated by a liquid bridge is, to our knowledge, not yet
available. The extension of the model, briefly summarized
in Section 3.1.3, to this latter case appears to be difficult
and we will limit the discussion of the experimental results
to a few comments.
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Fig. 13. Resistance R vs. bridge diameter Φ. We observe that
the thermal resistance of the contacts decreases when the di-
ameter of the liquid bridge is increased. The dashed line is a
guide for the eye while the horizontal black line corresponds
to the value, R∞ = 56.6 K W−1, estimated for beads totally
immersed in oil [from equations (7) and (8) with A = 1.7]. The
grey line corresponds to equation (9).

First, we can obtain an estimate of the thermal re-
sistance R∞, one would measure for beads immersed in
silicon oil, and compare this latter value to the minimum
of R reported in Figure 13. The thermal conductivity of
the silicon oil kso is 0.16 W m−1 K−1. In this case, ζ � 101
and ξ � 2.4 (for F = 100 N). Replacing ka by kso in equa-
tion (8), we get H0(ζ) � 5.33 + A, which accounts for the
heat transport through the fluid layer around the contact
(A is again a constant of the order of unity). Moreover,
we know from reference [2] that, for a value of ξ as small
as 2.4, the value 2ξ/π � 1.5 largely overestimates the real
value of Hc(ξ), which is associated with the conduction
through the contact circle of radius ρ, and that the cor-
rection ∆Hm(ξ) remains much smaller than unity. Thus,
we can neglect Hc(ξ) and ∆Hm(ξ) in equation (7), which
leads to R∞ � 398/(5.33 + A) K W−1. If we assume that
the value A = 1.7 remains unchanged when the beads are
immersed in air or in silicon oil, we get R∞ � 56.6 K W−1

(Fig. 13). We observe that the resistance of the contact R
approaches R∞ when the diameter Φ of the liquid bridge
is increased. Even if R remains about 30% larger than
R∞ for Φ/d � 0.3, we consider that the agreement be-
tween our experimental data and the theoretical estimate
of R∞ again reinforce the validity of our measurements.
Moreover, the model tells us that, in the case of beads
immersed in oil, the heat is mainly transfered through the
liquid layer around the contact region and not through the
circle of contact (indeed, Hc(ξ) � H0(ζ)). We expect the
conclusion to hold true in the case of a large liquid bridge
decorating the contact region. This provides us with an
important clue for understanding the smooth variation of
R with the diameter φ of the bridge.

We could expect, from equations (7) and (8) and from
the ratio air- to oil-conductivity, R to suddenly decrease
when the liquid is introduced in the contact region. How-
ever, we observe experimentally that R decreases almost
linearly as Φ is increased. This feature may be qualita-
tively understood as follows: in the case of dry beads,
about half of the heat is transfered through the real bead-
bead contact, the second half passing through the air gap
around the contact in spite of the small radius ρ of the con-

tact circle. Think now about what would happen, if the
radius ρ was slightly increased by δρ. We would mainly
expect Hc(ξ) to increase linearly with δρ as Hc(ξ) ∝ ρ,
∆Hm(ξ) to remain negligible, and H0(ζ) not to change.
Note that to increase ρ by δρ is equivalent to decorating
the contact with a steel bridge of diameter Φ = 2(ρ + δρ).
The corresponding variation δR of the resistance would
then be given by δR = −Rδρ/ρ {from equation (7),
δ[loge(R)] = −δ[loge(Hc)]}. Thus, the introduction in the
contact region of a small quantity of oil, whose conduc-
tivity is smaller than that of steel, is expected only to de-
crease continuously the resistance of the contact and not
to produce any discontinuous change in R. If we assume
that the addition of oil produces the same effect as the
addition of steel except that the transport of heat occurs
in oil instead of in steel, we can roughly estimate

δR

R
= −kso

ks

Φ − 2ρ

2ρ
(9)

which leads to dR
dΦ � −5.2 K W−1 mm−1. As the presence

of the liquid bridge also modifies the temperature field
in the bead, leading to a spreading of the temperature-
field lines and, thus, to reduced thermal resistance. The
slope given by equation (9) is expected to overestimate the
experimental value for small Φ, which is observed experi-
mentally (Fig. 13). Obviously, due to assumptions which
remain open to criticism, this quantitave estimate must
be considered with caution. However, we consider that
the reasoning presented above is qualitatively correct for
explaining the smooth dependency of the resistance R on
the diameter Φ, when the contact region is decorated by
a liquid bridge.

4 Conclusions

First, we would like to point out several flaws in our ex-
perimental situation; due to long thermal times (especially
2π/ω0 � 15 mn) the experimental times are long [for in-
stance, more than 10 hours are needed to measure H(n)(ν)
at five relevant frequencies ν]; the study of R as a function
of the applied force F or of the nature of the surrounding
gas, which is in principle possible, would require a huge
experimental effort. Indeed, at least the times τb and τc

would depend on F or on the nature of the surrounding
gas, so a characterization of the whole experimental setup
would be necessary. The analysis could not be limited to
the response of the system at a given position n in the
chain, which would increase significantly the experimen-
tal time. Note, however, that the behavior of H(n)(ν) as a
function of n at one given frequency ν would be, in prin-
ciple, enough for determining ω0. Such studies remain to
be done although we already attempted, before drawing
our conclusions, to measure the resistance of the contacts
in air, nitrogen, carbon dioxide and helium and obtained
sensible qualitative-results. However, these studies were
limited to the thermal response at a given position n as
a function of the frequency ν, which unfortunately turned
out not to be sufficient to determine R afterwards.
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In conclusion, we have shown that the study of the
heat transport along a chain of beads is a pertinent way
to access the thermal properties of the contact. The ex-
perimental method is applied successfully to the case of
dry contacts in the sense that the measured resistance
R can be accounted for by a classical model by Batchelor
et al. [2]. We made use of the experimental setup for study-
ing the effect of liquid bridges decorating the contact re-
gions and observed a smooth decrease in the thermal resis-
tance when the diameter of the bridge is increased. Even
if a theoretical description of this latter experimental situ-
ation is not yet available, simple arguments, which extend
the dry-contact model, allow us to understand, at least
qualitatively, the experimental results. This work provides
important clues for understanding the transport of heat
in partially wet granular materials.

The authors would like to thank C. Tassius and E. Freyssingeas
for careful reading and useful criticism of the manuscript.

Appendix: Modeling of the experimental
situation

We observe experimentally that the temperature oscilla-
tion at a given frequency ν decreases exponentially when
n increases and tends to a finite value for large values of n.
These experimental observations are accounted for by the
following modeling of the experimental system (Fig. 10).

The thermal conductivity of the chain can be ac-
counted for as follows: we consider each bead as a thermal
mass, C, in contact with its two neighbors (except bead 1)
through identical thermal resistors, R. We assume that the
thermal losses through the PTFE plates, which are used
to align the beads, can be described as the effect of a sin-
gle thermal resistor, β, which connects locally each bead
to the remaining part of the experimental setup. Let us
denote T (n)(t) the temperature of the bead n at time t.
We can thus write, taking ω0 ≡ 2/(RC) and τc ≡ βC,

∂T (n)

∂t
=

ω0

2

[
T (n+1) + T (n−1) − 2T (n)

]

− 1
τc

[
T (n) − Tf(xn)

]
(n > 1) (10)

where Tf(xn) denotes the temperature of the experimen-
tal setup at the position xn ≡ (n − 1)d of the bead
n (diameter d). We will assume that the chain is long
enough to be considered as semi-infinite: the boundary
condition far away from the heat source is then written
as T (n+1) = T (n), (n → ∞). We will further assume that
the contact between the first bead with the metallic part,
that constrains the chain along its axis, can be described
by a simple thermal resistor, γ. The first bead is heated
by injecting the heating power P (t) so that the energy

balance leads to (taking τb ≡ γC)

∂T (1)

∂t
=

ω0

2

[
T (2) − T (1)

]

− 1
τb

[
T (1) − Tf(0)

]
+

P

C
. (11)

Let us now assume that the experimental setup, apart
from the PTFE plates and the chain, behaves like a semi-
infinite rod (diffusion coefficient D) in contact with the
outside atmosphere (at temperature Ta) through the con-
ductance per unit length 1/η. Furthermore, we assume
that the thermal contact between the beads and the rod
along the chain is bad enough for the temperature of the
rod not to be affected by the corresponding heat sources
(i.e. β is large and the diffusion in the rod is fast). As a
consequence, we can write:

∂Tf

∂t
= D∆Tf − 1

τl
(Tf − Ta). (12)

where τl = ηCf is the characteristic time associated with
the thermal losses to the atmosphere (here Cf is the heat
capacity per unit length of the metallic frame). We will
consider that the temperature profile Tf (x, t) only results
from energy injection at x = 0 from bead 1 (we thus as-
sume that γ � β). Writing the energy balance at the
contact between bead 1 and the rod leads to:

T (1) − Tf(0)
γ

= −DS∇Tf(0) (13)

where S stands for the cross section of the rod.
After having written the general set of equations (10)

and (12) and the boundary conditions (11) and (13), we
consider the harmonic response of the experimental setup
as a function of the frequency ν = ω/(2π) by writing:

Tf(x, t) = T0 exp(jωt − kfx), (14)

T (n)(t) = T
(n)
0 exp(jωt), (15)

and
P (t) = P (ω) exp(jωt). (16)

From equation (12), we get k2
f = η+jω

D whereas the

boundary condition (13) leads to T
(1)
0 = T0(1 + α) with

α ≡ γDSkf . In addition, equation (10) imposes:

T
(n)
0 = T

(0)
0 exp[−(n − 1)k] (17)

+T0
exp[−(n − 1)kfd]

1 + ω0τc[1 − cosh (kfd)] + jωτc

with cosh (k) =
[
1 + 1

ω0τc

]
+ j ω

ω0
. The constants T

(0)
0 and

T0 are obtained as functions of P by using the second
boundary condition (11).



J.-C. Géminard et al.: Thermal conductivity associated with bead-bead contacts 517

In the limit |kfd| � 1, which is well satisfied in our
experimental conditions, equation (17) reduces to

CT
(n)
0

Pτb

=
{
1 + [α + j(1 + α)ωτc] exp [−(n − 1)k]

}
/

{
(1 + jωτc)[α + j(1 + α)ωτb]

+
1
2
ω0τb[1 − exp (−k)][α + j(1 + α)ωτc]

}
. (18)

We point out that the diffusion coefficient in the rod, D,
only appears, in this final expression proposed for |T (n)

0 |,
in the coefficient α. We are in the limit |nkfd| � 1, which
leads to |kfd| � 1 when we consider the limit n 
 1
(the diffusion in the rod is fast) but, even in this limit,
α ≡ γDSkf can remain finite. Note that, from equa-
tion (18), the amplitude T

(n)
0 of the temperature oscil-

lations decreases exponentially when n is increased and
reaches, for n large, the value, T

(∞)
0 which magnitude re-

mains finite as observed experimentally [Fig. 9, Eq. (4)].
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